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LOCAL DUALITY FOR STRUCTURED RING SPECTRA

TOBIAS BARTHEL, DREW HEARD, AND GABRIEL VALENZUELA

Abstract. We use the abstract framework constructed in our earlier paper [BHV15] to study
local duality for Noetherian E∞-ring spectra. In particular, we compute the local cohomology
of relative dualizing modules for finite morphisms of ring spectra, thereby generalizing the
local duality theorem of Benson and Greenlees. We then explain how our results apply to the
modular representation theory of compact Lie groups and finite group schemes, which recovers
the theory previously developed by Benson, Iyengar, Krause, and Pevtsova.

1. Introduction

1.1. Background and motivation. In [BHV15], we developed an abstract framework for con-
structing local cohomology and local homology functors for a general class of stable ∞-categories,
and used it to demonstrate the ubiquity of local duality in algebra and topology. The goal of this
paper is to investigate a specific class of examples in detail, applying our methods in particular
to modular representation theory. Moreover, we consider the relation between local and global
duality for structured ring spectra, thereby providing a different perspective on the Gorenstein
condition previously studied in depth by Greenlees [Gre16]. The main examples of ∞-categories
of interest to us in this paper are coming from the modular representation theory of a finite
group G over a field k of characteristic p dividing the order of G. There are two natural stable
∞-categories associated to the group algebra kG: The derived category DkG = DModkG and the
stable module category StModkG. Benson and Krause [BK08] constructed a single triangulated
category StablekG fitting into a recollement

StModkG // StablekG //oo
oo

DkG,oo
oo

hence containing the information of both of the outer terms. If G is a p-group, Morita theory
provides an equivalence between StablekG and the homotopy category of module spectra over the
E∞-ring spectrum C∗(BG, k) of cochains on G with coefficients in k, and it is straightforward
to lift this to an equivalence of underlying ∞-categories. However, for general finite G, StablekG
is not generated by k and hence ModC∗(BG,k) forms a proper localizing subcategory.

Benson, Iyengar, and Krause [BIK08] developed a theory of local cohomology and homology
functors for certain triangulated categories, which was employed in remarkable work [BIK11b]
to classify all localizing subcategories of StablekG. Our first aim is to show that their theory
is equivalent to our abstract local duality framework when applied to the cellular objects in
StablekG. This requires a mild modification and generalization of our techniques, which we
develop in Section 2. Specifically, we formulate abstract local duality for torsion subcategories
that are not necessarily ideals. This allows us to study cellular objects in rather general stable
∞-categories, thus covering examples like the motivic homotopy category as special cases.

Our approach can then be described in two steps:

(1) Formulate and prove local duality for Noetherian E∞-ring spectra R, which applies in
particular to R = C∗(BG, k).
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(2) Transfer this theory to the subcategory of cellular objects in StablekG via derived Morita
theory.

While this seems to be more complicated than the approach taken in [BIK08] at first sight,
it has several advantages. First of all, ∞-categories of module spectra are compactly generated
by the free module of rank 1, and are therefore amenable to the methods of [BHV15]. More-
over, since we can directly work with the coefficients of R rather than an action as in [BIK08],
the construction of several spectral sequences computing local cohomology and local homology
becomes more transparent, allowing us to verify convergence in many new cases. Finally, as we
will see shortly, the theory for Noetherian E∞-ring spectra is interesting in its own right, as it
provides a toy example for potential generalizations to derived algebraic geometry.

1.2. Main results. We proceed to briefly summarize the main theorems of the present paper.
Building on the abstract framework developed in Section 2, the main result of Section 3 is the
construction of local cohomology and local homology functors for structured ring spectra in terms
of specialization closed subsets of the Zariski spectrum of π∗R. Informally speaking, this theory
provides a notion of support for affine derived schemes analogous to [BIK08, BIKP16b].

Theorem (Theorem 3.9). Let R be an E∞-ring spectrum with π∗R a graded Noetherian ring. For

any specialization closed subset V ⊆ Spech(π∗R) there exists a quadruple of functors (ΓV , LV ,∆V ,ΛV)
on ModR satisfying the local duality properties listed in loc. cit.. Moreover, these functors co-
incide with the local cohomology and local homology functors previously constructed by Benson,
Iyengar, and Krause [BIK08].

Following the approach outlined above, we obtain the local cohomology and local homology
functors we were after, not just for finite groups, but in fact for finite group schemes. After
introducing an appropriate ∞-category of comodules over Hopf algebras, the following result is
proved in Section 5 in terms of finite-dimensional Hopf algebras; for variety, we state it here in
its equivalent geometric form; see for example [GR16, Ch. II] for more details on ind-coherent
sheaves.

Theorem (Theorem 5.3). If G denotes a finite affine group scheme over a field k, then the

∞-category IndCohcellG of cellular ind-coherent sheaves on G admits local cohomology ΓV and
local homology functors ΛV satisfying local duality for every specialization closed subset V ⊆
Spech(H∗(G, k)).

This theorem comes with a strongly convergent spectral sequence computing the local coho-
mology of a cellular ind-coherent sheaf F from the algebraic local cohomology of its cohomology,
see Proposition 5.17,

E2
s,t

∼= (Hs
pH

∗(G,F)p)t =⇒ Hs+t(G,Γp F),

generalizing a similar spectral sequence for finite groups and the trivial module constructed
earlier by Greenlees and Lyubeznik [GL00].

As one application of our framework, we formulate and prove an analog of the chromatic split-
ting conjecture for Noetherian E∞-ring spectra in the companion paper [BHV16]. In the present
paper, we instead turn to the study of the relative dualizing module and Gorenstein duality for
E∞-ring spectra in Section 4. Generalizing the notion of Gorenstein for discrete commutative
rings, we call a structured ring spectrum R absolute Gorenstein whenever it satisfies Gorenstein
duality for all homogeneous prime ideals p in π∗R, which means that the local cohomology π∗ΓpR
of R at p is given by the injective hull of the residue field (π∗R)/p. This notion is closely related
to Greenlees’ definition of Gorenstein duality, see [DGI06, Gre16], but does not make reference
to a residue ring spectrum k lifting (π∗R)/p.
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Furthermore, recall that the forgetful functor f∗ : ModS → ModR corresponding to a map of
ring spectra f : R → S has both a left and a right adjoint, given by induction f∗ and coinduction
f!, respectively. The coinduced module ωf = f!(R) ∈ ModS is the relative dualizing module; for
example, if f∗ preserves compact objects, then it satisfies Grothendieck duality:

f∗(−)⊗ ωf ≃ f!(−),

see [BDS16]. Our next theorem computes the local cohomology of the relative dualizing module
under certain conditions, thereby relating global and local duality.

Theorem (Theorem 4.27). Suppose f : R → S is a morphism of Noetherian E∞-ring spectra
with R Gorenstein, such that S is a compact R-module, then for every homogeneous prime ideal
p in π∗S there is an isomorphism

π∗(Γpωf ) ∼= Ip

of π∗S-modules, where Ip is the injective hull of the residue field (π∗S)/p.

This result has two consequences. Firstly, the given formula lifts to an equivalence (ΓpS)⊗S

ωf ≃ Ip of S-modules, where Ip denotes the Brown–Comenetz dual of S associated to p. This
equivalence can be read as a version of Gorenstein duality for S twisted by the relative dualizing
module ωf . In other words, under the assumptions of the theorem, Gorenstein duality for R
ascends to S up to a twist. Inspired by Noether normalization in commutative algebra, for a
given ring spectrum S one can often find a morphism f satisfying the conditions of the theorem
and such that ωf is an invertible S-module. When this is the case, we refer to f as a Gorenstein
normalization of S.

Corollary. If S admits Gorenstein normalization, then S has Gorenstein duality with twist ωf

for all prime ideals p in π∗S, i.e., it satisfies (ΓpS)⊗S ωf ≃ Ip.

We then exhibit several examples of ring spectra which admit (twisted) Gorenstein duality,
as for instance the E∞-algebra of cochains C∗(BG, k) on a compact Lie group G with coeffi-
cients in a field k. This recovers and generalizes Benson’s conjecture as proven by Benson and
Greenlees [BG08] for compact Lie groups satisfying a certain orientability condition.

Secondly, we may interpret the above theorem as a shadow of a residual complex formalism
in derived algebraic geometry. To see this, recall that Grothendieck and Hartshorne [Har66]
construct dualizing complexes by gluing together local dualizing complexes according to a natural
stratification of a given scheme. Heuristically, the local cohomology at p of the resulting complex
should then isolate the local dualizing complex at p, which is precisely the content of our theorem
above. This observation motivates to seek a construction of residual complexes for spectral
schemes; we hope to return to this point in a future paper.

1.3. Notation and conventions. Throughout this paper, we will work in the setting of ∞-
categories as developed in [Lur09, Lur16], and will use the local duality framework described
in [BHV15]. In particular, all constructions will implicitly be assumed to be derived, unless
otherwise stated. A stable category is a symmetric monoidal stable ∞-category C = (C,⊗) which
is compactly generated by dualizable objects and whose monoidal product ⊗ commutes with
colimits separately in each variable. Writing A for a unit of the stable category (C,⊗), we define
the (Spanier–Whitehead) dual of an object X ∈ C by X∨ = HomC(X,A), where HomC denotes
the internal mapping object of C; note that, under our assumptions on C, HomC exists for formal
reasons.

A subcategory of T ⊆ C is called thick if it is closed under finite colimits, retracts, and desus-
pensions, and T is called localizing if it is closed under all filtered colimits as well. Furthermore,
a thick subcategory T in C is a thick ideal if T ⊗X ∈ T for all T ∈ T and all X ∈ C, and the
notion of localizing ideal is defined analogously. For a collection of objects S ⊆ C, we denote
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the smallest localizing subcategory of C containing S by LocC(S), and Loc⊗C (S) for the localiz-
ing ideal of C generated by S. If the ambient category is clear from context, we also omit the
subscript C.

All discrete rings R in this paper are assumed to be commutative and graded, and all ring-
theoretic notions are implicitly graded. In particular, an R-module M refers to a graded R-
module and we write ModR for the abelian category of discrete graded R-modules. Prime ideals
in R will be denoted by fraktur letters p, q, r and are always homogeneous, so that Spech(R)
refers to the Zariski spectrum of homogeneous prime ideals in R.

Finally, our grading conventions are homological; differentials always decrease degree. Thus,
for example, π−iC

∗(BG, k) ∼= Hi(G, k), i.e., C∗(BG, k) is a coconnective E∞-ring spectrum.

Acknowledgements. We would like to thank John Greenlees, Srikanth Iyengar, Henning Krause,
and Vesna Stojanoska for helpful discussions, and the referee for many useful comments and
corrections. Moreover, we are grateful to the Max Planck Institute for Mathematics for its
hospitality, funding two week-long visits of the third-named author.

2. Local duality contexts and recollements

The goal of this section is to set up an abstract framework in which local duality for stable
categories can be conveniently studied. The material of the first two subsections is well known
to the experts, and can be skipped on a first reading.

2.1. Abstract local duality. We recall some definitions, constructions, and results from [BHV15],
in a slightly more general setup which allows localizing subcategories that are not necessarily
tensor ideals. This extra generality is required for the applications to cellular objects in later
sections.

Definition 2.1. A symmetric monoidal stable∞-category C = (C,⊗, A) with symmetric monoidal
structure ⊗ and unit A is called a stable category if it satisfies the following conditions:

(1) The ∞-category C is compactly generated by a set G of (strongly) dualizable objects in
C. In particular, C is presentable.

(2) The symmetric monoidal product ⊗ preserves colimits separately in each variable.

We refer the reader to [BHV15, Sec. 2] for a summary of the basic properties of stable categories
and their localizing subcategories.

For a localizing subcategory T ⊆ C, we often write ιT : T → C for the corresponding inclusion
functor; when no confusion is likely to occur, ιT is applied implicitly whenever necessary. More-
over, we denote by T ⊥ the left-orthogonal of T in C, i.e., the thick subcategory of C generated
by all objects X for which Hom(T , X) ≃ 0.

Definition 2.2. A local duality context (C, T ) consists of

(1) a stable category C, and
(2) a localizing subcategory T ⊆ C which is generated by compact objects in C.

If C is monogenic and T is generated by a single compact object T ∈ C, then we sometimes write
(C, T ) for (C,Loc(T )).

As an example for the reader to keep in mind, one can consider (ModR, R/I) forR a Noetherian
commutative ring and I ⊆ R an ideal generated by a regular sequence, see [BHV15, Sec. 3].

Remark 2.3. This definition is a mild generalization of the one given in [BHV15], in which we
additionally required T to be a localizing ideal. The main reason for extending our definition is
the application to categories of cellular objects in Section 2.3. Since the proofs work equally well
for localizing subcategories, we will not reproduce the arguments here; see also the discussion in
[HPS97, Rem. 3.1.3].
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A local duality context generates a number of categories and functors with many good prop-
erties, which are summarized in the next theorem.

Theorem 2.4. Let (C,⊗, A) be a stable category compactly generated by dualizable objects. If

(C, T ) is a local duality context, then T ⊥ ⊆ C is a localizing subcategory and the following
properties hold:

(1) The inclusion ιT has a right adjoint Γ = ΓT , and the inclusions ιT ⊥ and ιT ⊥⊥ have left
adjoints L = LT and Λ = ΛT , respectively, which induce natural cofiber sequences

ΓX −→ X −→ LX and ∆X −→ X −→ ΛX

for all X ∈ C. Here, ∆ is right adjoint to ιT ⊥ . In particular, Γ is a colocalization functor
and both L and Λ are localization functors.

(2) Both Γ: C → C and L : C → C preserve all colimits. Moreover, L preserves compact
objects.

(3) The functors Λ′ = ΛιT : T → T ⊥⊥ and Γ′ = ΓιT ⊥⊥ : T ⊥⊥ → T are mutually inverse
equivalences of stable categories. Moreover, there are natural equivalences of functors

ΛΓ
∼ // Λ and Γ

∼ // ΓΛ.

(4) The functors (Γ,Λ) form an adjoint pair, so that we have a natural equivalence

Hom(ΓX,Y ) ≃ Hom(X,ΛY )

for all X,Y ∈ C. Similarly, viewed as endofunctors on C, L is left adjoint to ∆.
(5) There is natural equivalence ΛL ≃ Σ∆Γ.
(6) There is a homotopy pullback square of functors

Id //

��

Λ

��
L // LΛ,

which is usually referred to as the fracture square.

Proof. The first four parts are given in [BHV15, Thm. 2.21] as an ∞-categorical version of
[HPS97, Thm. 3.3.5], while Parts (5) and (6) are contained in [BHV15, Cor. 2.26, Rem. 2.29]
extending work of Greenlees [Gre01]. �

The categories and functors considered in this theorem can be organized in the following
diagram of adjoints,

(2.5)

T ⊥

��

��

◆
●

❂
✸

✱
✫

✦

C

L

OO

∆

OO

Γ~~⑥⑥⑥⑥⑥⑥⑥⑥
Λ

""❋❋❋❋❋❋❋❋

T

>>⑥⑥⑥⑥⑥⑥⑥⑥

∼
//

99

✥
✛

✕
✍

✆
④

s

T ⊥⊥,

bb❋❋❋❋❋❋❋❋

where the dotted arrows indicate left orthogonality.

Remark 2.6. We refer to the equivalence of Theorem 2.4(4) as abstract local duality. This
choice of terminology is justified by specializing to classical local duality contexts, as for example
(ModR, R/I) for R a suitable commutative ring and I ⊆ R an ideal, see [BHV15, Sec. 3]. In the
case where R = Z so that ModZ refers to the (unbounded) derived ∞-category of abelian groups,
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taking I = (p), we get the usual notations of p-torsion, p-local, and p-complete Z-modules,
studied in, for example, [DG02, Sec. 3.1].

The only difference when working with a localizing category T which is not closed under
tensoring with objects in C occurs in Part (3) of Theorem 2.4, where the cocontinuity of Γ and L
does not imply that they are smashing. For completeness, we state the case of a localizing ideal
separately.

Lemma 2.7. Suppose (C, T ) is a local duality context and assume that T is a localizing ideal,

i.e., T is closed under tensoring with arbitrary objects in C. The left orthogonal T ⊥ is then a
localizing ideal as well, and both Γ and L are smashing functors, i.e., Γ(X) ≃ X ⊗ Γ(A) for all
X ∈ C and similarly for L.

Proof. This is proven as in [HPS97, Thm. 3.3.5]; for the ∞-categorical version of this result, see
[BHV15, Thm. 2.21]. �

2.2. Recollements. In order to facilitate the comparison between our construction of local
cohomology and local homology functors to other approaches, we now explain how to extract
two equivalent recollements from a local duality context. These correspond to choosing either
of the equivalent subcategories T or T ⊥⊥. For a more detailed discussion of recollements in the
setting of ∞-categories, see [Lur16, A.8].

Definition 2.8. A sequence of functors of stable ∞-categories

C0
g // C

f // C1

is a recollement if it is both a localization and a colocalization sequence. More explicitly, this
means that f and g admit left and right adjoints (f∗ ⊣ f ⊣ f!) and (g∗ ⊣ g ⊣ g!), respectively,
forming a colocalization and a localization sequence

C0
g // C

f //
g∗

oo C1
f∗

oo and C0 g
// C

f
//

g!oo
C1 .

f!oo

For more details and localization and colocalization sequences (at least on the level of triangulated
categories) we refer the reader to [Kra05, Sec. 3].

A recollement can be displayed more compactly as:

(2.9) C0 g // C f //
g∗

oo
g!oo

C1 .
f∗

oo
f!oo

Remark 2.10. The notions of localization sequence and colocalization sequence are dual to each
other. In order to avoid confusion, our convention is to always read them from left to right.

The next result collects a number of basic properties of recollements that we will use frequently
throughout this paper.

Lemma 2.11. Suppose C0
g
−→ C

f
−→ C1 is a recollement of compactly generated stable ∞-categories

with notation as in (2.9), then the following properties are satisfied:

(1) The functors f∗, g, and f! are fully faithful.
(2) The functors f∗ and g∗ preserve compact objects.
(3) In the colocalization sequence, g exhibits C0 as the kernel of f , and g∗ exhibits C0 as the

Verdier quotient C / C1. Dually, f! exhibits C1 as the kernel of g!, and f exhibits C1 as
the quotient C / C0.
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Proof. Statements (1) and (3) are part of the definition of a localization sequence. For (2), first
note that f and g preserve all colimits. By [Lur09, Prop. 5.5.7.2], this is equivalent to the fact
that their left adjoints f∗ and g∗ preserve compact objects. �

Proposition 2.12. If (C, T ) is a local duality context then, using the notation introduced in
Theorem 2.4, there exist two recollements

(2.13) T ⊥ ι
T ⊥ // C Γ //
L

oo

∆oo
T

ιT
oo

ι
T ⊥⊥Λ′

oo
and T ⊥ ι

T ⊥ // C Λ //
L

oo

∆oo
T ⊥⊥ .

ιT Γ′

oo

ι
T ⊥⊥oo

Furthermore, the mutual equivalences of Theorem 2.4(3) induce a natural equivalence between
these two recollements.

Proof. This follows from Theorem 2.4: By construction, there are localization sequences

(2.14) T
ιT // C

L // T ⊥ and T ⊥
ι
T ⊥ // C

Λ // T ⊥⊥ .

The localization sequence on the right can be modified by the equivalence of Theorem 2.4(3),
which provides a commutative diagram

(2.15) C
Λ

//

Λ !!❇❇❇❇❇❇❇❇ T ⊥⊥
ι
T ⊥⊥oo

Γ′

��
T ,

Λ′

OO

where the vertical functors Γ′ and Λ′ are mutual equivalences. The dual of the first localization
sequence of (2.14) is a colocalization sequence, so we obtain the first recollement displayed in
(2.13). Modifying the left localization sequence of (2.14) by the equivalence instead results in
the other recollement. Finally, the natural equivalence between these two recollements is induced
from the equivalences of (2.15). �

We will now exhibit a method for generating recollements starting from a category C. As a
special instance of this construction, we recover Krause’s stable derived category [Kra05].

Proposition 2.16. Suppose C1 is a stable category and D ⊆ C1 is a small idempotent complete
thick subcategory of C1 closed under the monoidal product of C1. If D contains the subcategory
Cω
1 of compact objects of C1, as well as the tensor unit of C1, then the pair (Ind(D), C1) is a local

duality context. In particular, there exists a recollement

C0
// Ind(D) //oo

oo
C1oo

oo

of stable categories.

Proof. First note that Ind(D) is a stable category, see [BHV15, Thm. 1.13], and it follows from
[BHV15, Lem. 1.17] that C0 is as well. By assumption, there exists a commutative diagram

Cω
1

j //

f

��

C1

Ind(f)

��
D

j
// Ind(D)

in which all functors are fully faithful and Ind(f) preserves all colimits. This square exhibits
C1 as a localizing subcategory of Ind(D) generated by the image of Cω

1 under the composite jf .
Since Cω

1 ⊆ D = Ind(D)ω, Theorem 2.4 and Proposition 2.12 apply to yield the claim. �
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Example 2.17. Suppose A is a symmetric monoidal locally Noetherian Grothendieck abelian
category (see [Pop73]) and write noeth(A) ⊆ A for the full subcategory of Noetherian objects in
A. Assume that the derived category D(A) is compactly generated, which is the case for example

if A is generated by a set of objects that remain compact in D(A). Since D(A)ω ⊆ Db(noeth(A)),

Proposition 2.16 applies to the pair (D, C1) = (Db(noeth(A)),D(A)), giving the recollement
studied by Krause in [Kra05].

Following Greenlees [Gre01], we can construct an abstract version of Tate cohomology in the
generality of local duality contexts.

Definition 2.18. The Tate construction associated to the local duality context (C, T ) is defined
as tT = LΛ, viewed as an endofunctor of C.

The next result immediately follows from Theorem 2.4(5); it was originally proven by Green-
lees [Gre01, Cor. 2.5], see also [BHV15, Rem. 2.29].

Corollary 2.19. Suppose (C, T ) is a local duality context. The restriction of the Tate construc-
tion tT to T via ιιT is naturally equivalent to Σ∆.

Remark 2.20. In fact, Lurie [Lur16, A.8.17] or [BHV15, Cor. 2.28] shows that the data of a
recollement (2.9) is equivalent to giving an exact functor C1 → C0. Unwinding his proof, one can
see that the functor corresponding to a recollement arising from a local duality context (C, T ) is

precisely the Tate construction tT = LιT ⊥⊥ : T ⊥⊥ → T ⊥. This together with Theorem 2.4(6)
makes precise the sense in which the Tate construction controls the gluing in a recollement.

2.3. Cellularity in stable categories. Throughout this section, assume that C = (C,⊗, A) is
a stable category. By definition, C is compactly generated, but it is not necessarily monogenic.
Even in the case where C is compactly generated by a finite set of objects S ⊂ Cω, so that we can
form the single compact generator

⊕

S∈S S, C does not have to be generated by its tensor unit
A. Consequently, there is no construction of homotopy groups for C with all the good properties
familiar from the category Sp of spectra.

In order to capture the part of C that admits a good notion of homotopy groups, we will
now introduce and study cellular objects in stable categories. Special cases of these ideas have
previously appeared in various contexts, for example in motivic homotopy theory [DI05, Tot15]
or work in progress by Casacuberta and White, in modular representation theory [BK08], and
in equivariant KK-theory [Del10].

Definition 2.21. Suppose C = (C,⊗, A) is a stable category. For any X ∈ C, we define its

homotopy groups as πC
∗X = πSp

∗ HomC(A,X), where the right-hand side are the homotopy groups
of the mapping spectrum from A to X . We will usually omit the superscript C on the homotopy
groups if no confusion is likely to occur.

Lemma 2.22. An object X ∈ Loc(A) is equivalent to 0 if and only if πC
∗X = 0.

Proof. Since A is a generator of Ccell = Loc(A), πC
∗X = π∗ HomC(A,X) being trivial is equivalent

to X being equivalent to 0. �

Definition 2.23. The category Ccell of cellular objects in C is defined as the localizing subcate-
gory of C generated by A. The right adjoint of the inclusion functor is denoted by

Cell : C // Ccell = LocC(A)

and will be referred to as cellularization.
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It follows that there is a colocalization sequence

Ccell,⊥ = Cac // C //oo Ccelloo

and we refer to Cac is the category of acyclics in C. If we assume further that the unit of C is
compact, we obtain a local duality context in which we can give an explicit description of the
associated local homology functor.

Let C = (C,⊗, A) be a stable category with A ∈ Cω and consider the local duality context
(C,Loc(A)). The resulting local cohomology and local homology functors are displayed in the
following diagram

(2.24)

Cac

��

��

P
❏

❆
✼

✴
✮

✩

C

Cπ

OOOO

Cell||③③③③③③③③
Lπ

$$■■■■■■■■■

Ccell

<<③③③③③③③③

∼
//

77

✣
✙

✓
☛

✂
①

♣

Cπ−local .

dd■■■■■■■■■

The colocalizing subcategory Cπ−local of C consists by definition of the π-local objects in C.
The next result justifies this choice of terminology.

Lemma 2.25. The functor Lπ : C → Cπ−local is left Bousfield localization with respect to the
πC
∗ -equivalences. In other words, it is the localization functor that inverts the class of those

morphisms f in C such that πC
∗ f is an isomorphism.

Proof. By definition, Lπ is left Bousfield localization away from those objects in X ∈ C such that
Cell(X) ≃ 0, i.e., the π-acyclic objects. By Lemma 2.22 and adjunction, this condition on X is
equivalent to

0 = πC
∗ Cell(X) ∼= π∗ HomC(A,Cell(X)) ∼= π∗ HomC(A,X) ∼= πC

∗X.

Therefore, π-acyclicity of X is equivalent to πC
∗X being trivial, and the claim follows. �

We now show that the subcategory of cellular objects in C is the part of C to which the
intuition and methods from stable homotopy theory apply most directly.

Proposition 2.26. If C = (C,⊗, A) is stable category with A compact, then the functor HomC(A,−)
induces an exact and symmetric monoidal equivalence

Ccell ∼ // ModR

with R = EndC(A) ∈ AlgE∞
(Sp). The inverse equivalence is given by the functor −⊗R A, using

the canonical R-module structure on A.

Proof. This is an instance of derived Morita theory, as proven originally by Schwede and Ship-
ley [SS03, Thm. 3.1.1] and Lurie [Lur16, Thm. 7.1.2.1] in the setting of ∞-categories. Since C
is symmetric monoidal, the unit A is a commutative algebra object in C, hence R is an E∞-ring
spectrum. �

As an application, we deduce the existence of the Künneth spectral sequence for cellular ob-
jects. Note that, for arbitraryX,Y ∈ C, there can be no convergent spectral sequence computing
the homotopy groups of X ⊗ Y from π∗X and π∗Y .
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Corollary 2.27. For any X,Y ∈ Ccell there exists a natural and convergent spectral sequence

E2
p,q

∼= Torπ
C

∗
A

p,q (πC
∗X, πC

∗Y ) =⇒ πC
p+q(X ⊗ Y ),

where the bigraded Tor group Tor
πC

∗A
∗,∗ is computed in the category of graded π∗A-modules.

Proof. By Proposition 2.26 and the observation that the notions of homotopy groups in Ccell and
ModR agree under the equivalence, it suffices to construct the Tor spectral sequence

E2
p,q

∼= Torπ∗R
p,q (π∗M,π∗N) =⇒ πp+q(M ⊗R N)

for all M,N ∈ ModR. A proof for arbitrary E1-ring spectra can be found in [EKMM97,
Thm. IV.4.1] and [Lur16, 7.2.1.19]. �

Specializing this result to the motivic homotopy category, we recover a variant of the spectral
sequence constructed by Dugger and Isaksen in [DI05, Prop. 7.7].

Remark 2.28. More generally, we obtain a notion of S-cellularity for any finite set of compact
objects S ⊆ Cω. The same arguments apply to this more general situation, giving rise to a notion
of S-indexed homotopy groups

πS
∗ : C // ModRS

,

where RS = EndC(⊕S∈SS). Note, however, that the equivalence given in Proposition 2.26 might
not be symmetric monoidal, since in general RS has only the structure of an E1-ring spectrum.

3. Local duality for ring spectra

3.1. Module categories and the local to global principle. Given the equivalence between
cellular objects and ring spectra via derived Morita theory we study local homology and co-
homology for ring spectra in this section. The results mentioned in Section 2.3 actually hold
under slightly weaker hypothesis, see [Lur16, Prop. 7.1.2.6 and Prop. 7.1.2.7] and also [SS03,
Thm. 3.1.1]. Recall that if R is an Ek-ring spectrum, the ∞-category ModR of (left) R-modules
inherits an Ek−1-monoidal structure [Lur16, Sec. 4.8.3].

Theorem 3.1 (Schwede–Shipley, Lurie). Suppose that (C,⊗, A) is a stable, presentable, Ek−1-
monoidal ∞-category for 1 ≤ k ≤ ∞, such that the tensor product functor preserves colimits
separately in each variable. Then there is an equivalence C ≃ ModR of Ek−1-monoidal ∞-
categories if and only if A is a compact generator of C, where R ≃ EndC(A) is naturally an
Ek-ring spectrum.

In general if A is compact, but not a compact generator, then ModR is a colocalization of C,
and is equivalent (still as Ek−1-monoidal ∞-categories) to the subcategory of cellular objects of
C, as studied more thoroughly in Section 2.3.

We hence let R denote an arbitrary E∞-ring spectrum; the theory works more generally
for Ek ring spectra for k ≥ 2, but we do not consider this case. The ∞-category ModR is a
compactly generated (the compact generator is R itself) E∞-monoidal, presentable ∞-category.
Moreover our assumptions imply that π∗R is a graded-commutative ring, and that if r ∈ π∗R

is homogeneous of degree d, then the map M
r
−→ Σ−dM is a map of R-modules. We assume

additionally that π∗R is (graded) Noetherian, i.e. satisfies the ascending chain condition for
homogeneous ideals, or equivalently every homogeneous ideal of π∗R is finitely generated.

Given a homogeneous ideal p ∈ π∗R, we wish to build a Koszul object R//p, and we do this
in stages. We base this on [BIK08, Sec. 5], however we note it is the analogue of the classical
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construction from commutative algebra. Suppose that a ∈ πdR, and let |a| = −d.1 For any
M ∈ ModR we then define by M//a by the fiber sequence

M
a
−→ ΣdM → M//a.

For a sequence of elements a = (a1, . . . , an) we define the Koszul complex M//a by iterating this
procedure; in particular we set M//a = Mn, where M0 = M and Mi = Mi−1//ai for i ≥ 1.

Lemma 3.2. There is an equivalence

M//a ≃ M ⊗ (R//a1)⊗ (R//a2)⊗ · · · ⊗ (R//an).

Proof. This is clear from the definitions. �

If p is a finitely-generated ideal in π∗R, we let M//p denote the Koszul object based on some
generating set of p; note that the Koszul object itself is dependent on the choice of generators,
but the localizing subcategory it generates depends only on the radical of the ideal, see [BIK11a,
Prop. 2.11] (in the language of [BHV15] R//p is equivalent to a shift of the object denoted
Kos1(p)).

Given a set of homogeneous elements T in π∗R, one can form the homogeneous localization
T−1π∗R. This procedure can be lifted to the spectrum level in the following sense.

Theorem 3.3 (Finite algebraic localization). For any set T of homogeneous elements in π∗R
there is a finite localization LT , and a natural equivalence π∗(LTM) ∼= T−1π∗M for any M ∈
ModR.

Proof. This is proved in [EKMM97, Ch. V.1]. For a proof in the spirit of our techniques one
can use the approach of [HPS97, Thm. 3.3.7], which also makes it clear that LT is a finite
localization. Let T denote the localizing subcategory generated by {R//t | t ∈ T }. The functor
LT arises from the local duality context (ModR, T ) as the localization functor whose category
of acyclics is T . We refer the reader to [HPS97, Thm. 3.3.7] for the proof of the claim that
π∗(LTX) ∼= T−1π∗X . �

Taking T = π∗R \ p, for any p ∈ Spechπ∗R, we get [HPS97, Prop. 6.0.7].

Proposition 3.4. For each p in Spechπ∗R there is a smashing localization functor Lp with the
property that π∗(LpM) ∼= (π∗M)p for any M ∈ ModR.

We will often write Mp for LpM , and write ModRp
for the essential image of Lp. We also

denote by ∆p the colocalization functor which is right adjoint to Lp when they are thought of
as endofunctors of ModR.

Remark 3.5. The use of Lp conflicts with the notation in [BHV15, Thm. 3.6], however we do not
use that notation in this paper so no confusion should arise.

Given a homogenous ideal p ∈ Spechπ∗R, let (R//p)p ≃ Rp//p denote the localization of the
Koszul object. We then have the following crucial result of Hovey, Palmieri, and Strickland
[HPS97, Thm. 6.1.9] which we will use repeatedly.

Theorem 3.6 (Local-to-global principle). There is an equality of Bousfield classes

〈R〉 =
∐

p∈Spechπ∗R

〈Rp//p〉.

In particular, for M ∈ ModR we have M ≃ 0 if and only if M ⊗Rp//p ≃ 0 for all p ∈ Spechπ∗R.

1The unusual choice of grading is because we will work with the coconnective ring spectrum R = C∗(BG, k)
in the sequel.
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Remark 3.7. In the context of triangulated categories with an action by a commutative ring R,
Benson, Iyengar, and Krause introduce a local-to-global principle [BIK11a, Sec. 3]. In the case of
ring spectra, the local-to-global principle holds if for each object M ∈ ModR there is an equality

Loc(M) = Loc({ΓpM | p ∈ Spechπ∗R}),

where Γp is a certain local cohomology functor which we will study more thoroughly in the sequel.
Note that this holds automatically in ModR, by combining [HPS97, Prop. 6.3.2] and [BIK11a,
Thm. 3.1(2)].

3.2. Local homology and cohomology functors. We begin by reviewing the construction of
local homology and cohomology functors for ring spectra. This is mainly a review of [BHV15,
Sec. 3] (which in turn is based on [GM95]), although we will generalize it slightly. To start, let
R be an E∞-ring spectrum with π∗R Noetherian.

Definition 3.8. A subset U ⊆ Spechπ∗R is called specialization closed if p ∈ U and p ⊆ q ∈
Spechπ∗R, implies that q ∈ U .

Equivalently, these are unions of Zariski closed subsets of Spechπ∗R. For instance, for any
homogeneous ideal p, the set V(p) = {q ∈ Spechπ∗R | p ⊆ q} is specialization closed. Given any
specialization closed subset V , we consider the full subcategory of ModR

ModV−tors
R := Loc⊗(R//p | p ∈ V) = Loc(R//p | p ∈ V),

where the latter equality comes from the observation that every localizing subcategory is auto-
matically a localizing ideal, since ModR is compactly generated by R [HPS97, Lem. 1.4.6]. This
is by definition a compactly generated subcategory, and so Theorem 2.4 and Lemma 2.7 yields:

Theorem 3.9. There exists a quadruple (ΓV , LV ,∆V ,ΛV) of endofunctors on ModR satisfying
the properties of Theorem 2.4. In addition, ΓV and LV are smashing.

Remark 3.10 (Recollements). By Proposition 2.12 there are recollements associated to the above
local duality contexts. In particular we have

ModV −loc
R

ιloc // ModR ΓV
//

LV

oo

∆V

oo
ModV −tors

R ,
ιtors

oo

ιcompΛ
′

oo
ModV −loc

R
ιloc // ModR ΛV //
LV

oo

∆V

oo
ModV −comp

R

ιtorsΓ
′

oo

ιcompoo

where Λ′ = ΛVιtors and Γ′ = ΓV ιcomp. The first recollement is a particular case of [BIK08,
Thm. 6.7].

Example 3.11. Consider the specialization closed subset Z(p) = {q ∈ Spechπ∗R | q 6⊆ p}.
It is a result of Benson, Iyengar, and Krause [BIK08, Thm. 4.7] that LZ(p) has the property
that π∗(LZ(p)M) ∼= (π∗M)p for any M ∈ ModR. We will see in Corollary 3.22 that LZ(p) is
equivalent to Lp as defined in Proposition 3.4.

This theorem is a generalization of [BHV15, Thm. 3.6] where we considered local duality

contexts of the form (ModR,Loc(R//p)) for ideals p ∈ Spechπ∗R. In fact, these are a special case

of the above, applied to the specialization closed subset V = V(p) = {q ∈ Spechπ∗R | p ⊆ q}.

Proposition 3.12. For any homogeneous ideal p ∈ Spechπ∗R the local duality contexts

(ModR,Loc(R//p)) and (ModR,Loc(R//q | q ∈ V(p)))

are equivalent.
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Proof. Clearly it suffices to show that Loc(R//p) = Loc(R//q | q ∈ V(p)). The argument now
proceeds as in [HP00, Prop. 3.1] which we include for the benefit of the reader.

First, suppose that q ∈ V(p) so that p ⊆ q. By [HPS97, Lem. 6.0.9] R//q even lies in the thick
subcategory generated by R//p, so that in particular we have Loc(R//q | q ∈ V(p)) ⊆ Loc(R//p).

For the other inclusion, it suffices to show that LV(p)R//p ≃ LV(p)R⊗R//p = 0, or equivalently,

by applying Theorem 3.6, that LV(p)R ⊗ R//p ⊗ R//q⊗ Rq = 0, for all q ∈ Spechπ∗R. If q 6⊇ p,
then R//p⊗ Rq = 0 by [HPS97, Prop. 6.1.7(d)]. On the other hand, if q⊇p, then q ∈ V(p), and
LV(p)R//q = 0, and we are done. �

Let a ∈ π∗R be a homogeneous element of degree −d and consider the diagram

M

a

��

M

a2

��

M

a3

��

· · ·

ΣdM
a //

��

Σ2dM

��

a // Σ3dM

��

a // · · ·

M//a // M//a2 // M//a3 // · · ·

where the morphisms in the last horizontal sequence are the ones induced by the commutativity of
the squares above. For an ideal p = (p1, . . . , pn) we let M//ps = M⊗R//ps1⊗· · ·⊗R//psn. This is a
shift of the object denoted Koss(p) in [BHV15] (in particular Koss(p) ≃ Σs(|p1|+···+|pn|)−nR//ps),
and applying [BHV15, Thm. 3.6] we get the following.

Corollary 3.13. For M ∈ ModR and −d = |p1|+ · · ·+ |pn| there are natural equivalences

ΓV(p)M ≃ colims Σ
−sd−nR//ps ⊗M and ΛV(p)M ≃ lims R//ps ⊗M.

We have the following spectral sequences due to Greenlees and May [GM95], which also
appeared in [BHV15, Prop. 3.17]. Here we write H∗

p for the local cohomology of a π∗R-module,

Hp
∗ for the local homology, and ČH∗

p for the Čech cohomology groups; we refer the reader to
[GM95] for a convenient review of these functors.

Proposition 3.14. Let R be a ring spectrum with π∗R Noetherian and p a finitely generated
homogeneous ideal of π∗R. Let M ∈ ModR. There are strongly convergent spectral sequences of
π∗R-modules:

(1) E2
s,t = (H−s

p (π∗M))t =⇒ πs+t(ΓV(p)M), with differentials dr : Er
s,t → Er

s−r,t+r−1,

(2) E2
s,t = (Hp

s (π∗M))t =⇒ πs+t(Λ
V(p)M), with differentials dr : Er

s,t → Er
s−r,t+r−1, and

(3) E2
s,t = (ČH−s

p (π∗M))t =⇒ πs+t(LV(p)M), with differentials dr : Er
s,t → Er

s−r,t+r−1.

Remark 3.15. If V is an arbitrary specialization closed subset, then we expect a spectral sequence
of the form

E2
s,t = (H−s

V (π∗M))t =⇒ πs+t(ΓVM),

where H∗
V refers to the local cohomology functor constructed in [Lip02, Eq. (3.5)], however we

have not checked the details.

Given p ∈ Spechπ∗R, we now define p-local cohomology and homology functors. We will
see in Corollary 3.22 that these agree with those considered by Benson, Iyengar and Krause in
[BIK08, BIK12]. We remind the reader that ∆p denotes the functor that is right adjoint to Lp

when they are considered as endofunctors of ModR.

Definition 3.16. For p ∈ Spechπ∗R andM ∈ ModR define the p-local cohomology and homology
functors, respectively, by ΓpM = ΓV(p)Mp and ΛpM = ΛV(p)∆pM .
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Let Modp−tors
Rp

and Modp−comp
Rp

denote the essential images of Γp and Λp respectively; note that

these are both full subcategories of ModR. Moreover, Modp−tors
Rp

inherits a symmetric monoidal

structure from ModR, with unit ΓpR.

Lemma 3.17. The functor Γp : ModR → Modp−tors

Rp
is a smashing, symmetric monoidal functor,

and Λp is right adjoint to Γp (considered as endofunctors of ModR), so that there is an equivalence

HomR(ΓpM,N) ≃ HomR(M,ΛpN)

for M,N ∈ ModR. Moreover, for −d = |p1|+ · · ·+ |pn|, we have

ΓpM ≃ colims Σ
−sd−nRp//p

s ⊗M and ΛpM ≃ lims R//ps ⊗∆pM,

Proof. Since Γp is the composite of smashing functors, it too is smashing, and this implies that
it is symmetric monoidal. That Λp is right adjoint to Γp follows from the fact that ∆p is right

adjoint to Lp and ΛV(p) is right adjoint to ΓV(p). The formulas are an immediate consequence
of Corollary 3.13. �

The following is immediate from Proposition 3.12 and the observation that (R//p)p ≃ Rp//p.

Lemma 3.18. For any p ∈ Spechπ∗R the full subcategory Modp−tors

Rp
is equivalent to Loc(Rp//p).

Note that Rp//p need not be compact in ModR, however Rp//p is compact in ModRp
. Hence

one can consider the local duality context (ModRp
,Loc(Rp//p)). Let Γ

′
V(p) denote the associated

local cohomology functor, so that Γ′
V(p)M ≃ colims Σ

−sd−nRp//p
s ⊗M via an argument similar

to Corollary 3.13. Note that this formula makes sense for M ∈ ModR and not just M ∈ ModRp
;

indeed Γ′
V(p) is simply the restriction of ΓV(p) to ModRp

.

We have spectral sequences for computing the homotopy groups of these functors.

Proposition 3.19. Let R be a ring spectrum with π∗R Noetherian and p a finitely generated
homogeneous ideal of π∗R. Let N ∈ ModR. There are strongly convergent spectral sequences of
π∗R-modules:

(1) E2
s,t = (H−s

p (π∗N)p)t =⇒ πs+t(ΓpN), with differentials dr : Er
s,t → Er

s−r,t+r−1, and

(2) E2
s,t = (Hp

s (π∗ HomR(Rp, N)))t =⇒ πs+t(Λ
pN), with differentials dr : Er

s,t → Er
s−r,t+r−1.

Proof. First the first, use the spectral sequence Proposition 3.14(1) with M = Np, and use
Proposition 3.4. For the second, use Proposition 3.14(2) with M = ∆pN . To identify the E2-
term, note that ∆pN ≃ HomR(R,∆pN) ≃ HomR(Rp, N), by adjointness. �

The following is also proved in [HPS97, Thm. 6.1.8]. We give a proof using the above spectral
sequence.

Corollary 3.20. An R-module M is in Modp−tors

Rp
if and only if π∗M is p-local and p-torsion.

Proof. Note that both conditions imply that M is p-local (i.e., Mp ≃ M), so we may as well
assume that π∗R is local with maximal ideal p. Thus, we can drop the assumption of p-locality,
and show that M is in Modp−tors

R if and only if π∗R is p-torsion.
If π∗M is p-torsion, then H0

p(π∗M) ∼= π∗M , and the higher local cohomology groups are 0.

Thus, the spectral sequence of Proposition 3.14(1) collapses to give an isomorphism π∗(ΓV(p)M)
≃
−→

π∗M , so that M is in Modp−tors
R .

For the other direction suppose that N ∈ ModR is arbitrary. The E2-term of the spectral se-
quence computing π∗(ΓV(p)N) is all p-torsion (see, for example, [BS13, Rem. 2.1.3]). This implies
that the E∞-page is also all p-torsion, and since the spectral sequence of Proposition 3.14(1) has
a horizontal vanishing line, the abutment π∗(ΓV(p)N) is also p-torsion. In our case this implies
that π∗(ΓV(p)M) ∼= π∗(M) is p-torsion. �
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3.3. Comparison to the Benson–Iyengar–Krause functors. For any specialization closed
subset V ⊂ Spechπ∗R (see Definition 3.8), Benson, Iyengar, and Krause construct a localization
functor LV : ModR → ModR whose kernel is precisely

TV = {X ∈ ModR | (π∗X)p = 0 for all p ∈ Spechπ∗R \ V},

see [BIK08, Sec. 3] where such functors are constructed more generally for compactly generated
triangulated categories with small coproducts with an action by a Noetherian ring R. The
subcategory TV is localizing [BIK08, Lem. 4.3] and by Thm. 6.4 of loc. cit. agrees with Loc(R//p |
p ∈ V). We give a direct proof of that fact here.

Proposition 3.21. For any specialization closed subset V the localizing subcategories TV and
Loc(R//p | p ∈ V) are equivalent.

Proof. Note that for any p ∈ V , we have V(p) ⊆ V since V is specialization closed. It follows
as in the proof of Corollary 3.20 that the homotopy groups π∗(R//p) are p-torsion. We see then
that (π∗R//p)p = 0 for all p ∈ p, and hence that (π∗R//p)q = 0 for all p 6⊂ q. It follows that
R//p ∈ TV(p) ⊆ TV . Since this is true for each p ∈ V we see that Loc(R//p | p ∈ V) ⊆ TV .

For the converse suppose that (π∗M)q = 0 for all q ∈ Spechπ∗R \ V . It suffices to show that
LVM ≃ LVR⊗M ≃ 0. Applying Theorem 3.6 again it suffices to show that LVR⊗M ⊗R//a⊗

Ra ≃ LV(R//a) ⊗ Ma ≃ 0 for all a ∈ Spechπ∗R. If a ∈ V then LV(R//a) = 0, so assume that
a 6∈ V ; by assumption then, (π∗M)a = 0. There is a spectral sequence [EKMM97, Thm. IV.4.1]

E2
p,q = TorR∗

p,q(π∗LV(R//a), π∗(Ma)) =⇒ π∗(LV(R//a)⊗Ma).

Since π∗(Ma) ∼= (π∗M)a = 0 (see Proposition 3.4) the spectral sequence shows that LV(R//a)⊗
Ma ≃ 0 as required. �

We can now provide the proof of the claimed statement before Definition 3.16. We recall that
Benson, Iyengar, and Krause construct functors Γp and Λp for a compactly generated triangulated
category T with set-indexed coproducts with an action by a Noetherian ring R.

Corollary 3.22. The functors Γp and Λp agree with the functors with the same name constructed
by Benson, Iyengar, and Krause for the case C = ModR.

Proof. Note the the functor Lp has category of acyclics TZ(p) where Z(p) = {q ∈ Spechπ∗R | q 6⊆
p}, and hence agrees with LZ(p). Then, by Proposition 3.21 the functors ΓV (p) and LZ(p) agree
with those given the same name in [BIK08]; this proves the result for Γp. The local homology
functor Λp is constructed in [BIK12] as the right adjoint of Γp; it is proved in Lemma 3.18 that
Γp and Λp, as constructed in this paper, form an adjoint pair. By uniqueness of adjoints Λp

agrees with the functor with the same name constructed by Benson, Iyengar, and Krause. �

4. Absolute Gorenstein ring spectra

In [BG08] Benson and Greenlees prove a conjecture due to Benson [Ben01], which amounts to
a local duality theorem in modular representation theory. Let G be a finite group and k a field of
characteristic p > 0. Benson and Greenlees prove that a certain R = C∗(BG, k)-module TR(Ip)
is isomorphic to a shift of ΓpR. One goal of this section is to give an alternative explanation for
this equivalence. In fact, we will generalize the result of Benson and Greenlees to a larger class
of ring spectra.
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4.1. Matlis duality and Brown–Comenetz duality. Let I be an injective R∗-module; we
introduce certain R-modules TR(I) with the property that π∗ HomR(−, TR(I)) is isomorphic to
Homπ∗R(π∗(−), I). To construct these, note that for I ∈ Injπ∗R

, the functor

Homπ∗R(π∗(−), I) : Modπ∗R
// ModZ

is exact and therefore representable by an object TR(I) ∈ ModR by Brown representability. This
construction is natural, hence induces a functor

TR : Injπ∗R
// Ho(ModR),

to the homotopy category of R-modules. This functor appears to have first been defined in
[HPS97, Sec. 6] and then studied more thoroughly in the stable module category for a finite
group in [BK02]. The functor T has the following universal property; for any injective π∗R-
module I and M ∈ ModR, there is an isomorphism π0 HomR(M,TR(I)) ∼= Hom0

π∗R
(π∗M, I). A

standard dimension shifting argument (e.g. [BK02, Lem. 3.2] or [BG08, Lem. 5.3]) shows that
this extends to an isomorphism of graded π∗R-modules

(4.1) π∗ HomR(M,TR(I)) ∼= Homπ∗R(π∗M, I).

In particular, taking M = R we get:

Lemma 4.2. Suppose I is an injective π∗R-module. Then there is a natural isomorphism
π∗TR(I) ∼= I.

It follows that π∗ HomR(TR(I
′), TR(I)) ∼= Homπ∗R(I

′, I) so that TR is fully faithful. We also
have the following simple observation.

Lemma 4.3. Let I be an injective π∗R-module. If M ∈ ModR is such that π∗M ∼= I, then
M ≃ TR(I).

Proof. The equivalence π∗M ∼= I lifts to a morphism M → TR(I) by (4.1), which is an isomor-
phism on homotopy. �

For the following, let Ip denote the injective hull of π∗R/p.

Lemma 4.4. For each p ∈ Spechπ∗R, we have TR(Ip) ∈ Modp−tors

Rp
.

Proof. Note first that π∗TR(Ip) ∼= Ip is both p-local and p-torsion. Indeed the torsion statement
is proved in [Mat89, Ch. 18], while it is easy to see (for example, [BIK08, Lem. 2.1]) that

(Ip)q =

{

Ip if q ∈ V(p),

0 otherwise.

The result then follows from Corollary 3.20. �

For the following recall that a graded ring is called local if it has a unique maximal homoge-
neous ideal.

Definition 4.5. We say that a ring spectrum R with π∗R local Noetherian of dimension n is
algebraically Gorenstein of shift ν if π∗R is a graded Gorenstein ring; that is, the local cohomology
Hi

m(π∗R) is non-zero only when i = n and (Hn
m(π∗R))t ∼= (Im)t−ν−n. If π∗R is non-local, then

it is algebraically Gorenstein of shift ν if its localization at each maximal ideal is algebraically
Gorenstein of shift ν in the above sense.

Lemma 4.6. Let p ∈ Spechπ∗R be an ideal of dimension d (i.e., d is the Krull dimension of
π∗R/p). If R is algebraically Gorenstein with shift ν, then Rp is algebraically Gorenstein of shift
ν + d.
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Proof. That Rp is Gorenstein is well-known, see, for example, [Mat89, Thm. 18.2]. Thus we just
need to calculate the shift. First, note that Rp has dimension n− d. By assumption, we have

(Hn
m(π∗R))t ∼= (Im)t−ν−n

and by the same argument in the proof of Lem. 7.1 of [GL00] we get

(Hn−d
p (π∗R)p)t ∼= (Ip)t−(ν+d)−(n−d). �

Proposition 4.7. Suppose R is algebraically Gorenstein of shift ν, and suppose p ∈ Spechπ∗R
has dimension d. Then, there is an equivalence ΓpR ≃ Σν+dTR(Ip).

Proof. The spectral sequence Proposition 3.19(1) computing ΓpR takes the form

(Hs
p(π∗R)p)t+s =⇒ πt(ΓpR),

with (H∗
p (π∗R)p)t+n−d

∼= (Ip)t−ν−d when ∗ = n − d and is 0 otherwise. Hence the spectral
sequence collapses to show that (Ip)t−ν−d

∼= πt(ΓpR). The result follows from Lemma 4.3. �

Example 4.8. (1) Suppose G is a finite group and H−∗(G, k) ∼= π∗C
∗(B, k) is a Gorenstein

ring. Then C∗(BG, k) is algebraically Gorenstein of shift 0. This follows from the
collapsing of Greenlees’ spectral sequence [Gre95, Thm. 2.1]

(Hs
mH

∗(G, k))−t =⇒ (Ip)t−s.

(2) Suppose G is a compact Lie group of dimension w, such that H∗(G, k) is Gorenstein, and
the adjoint representation of G is orientable over k. Then, using the Benson–Greenlees
spectral sequence [BG97a, Cor. 5.2], we see C∗(BG, k) is algebraically Gorenstein of shift
w.

Suppose that f : R → S is a morphism of ring spectra. Recall that this gives rise to adjoint
pairs (f∗, f

∗) and (f∗, f!), where f∗ : ModS → ModR is restriction of scalars, f∗ : ModR →
ModS ,M 7→ S ⊗R M is extension of scalars, and f! : ModR → ModS ,M 7→ HomR(S,M) is
coinduction.

Let rR,S(I) = Homπ∗R(π∗S, I) for each injective π∗R-module I; note that rR,S(I) is an in-
jective π∗S-module. The following is the analog of [BK02, Prop. 7.1], except here the role of
restriction is played by coinduction.

Proposition 4.9. Let f : R → S be a morphism of ring spectra. If I is an injective π∗R-module,
then there is a weak equivalence f!TR(I) ≃ TS(rR,S(I)).

Proof. Let M ∈ ModS . There are equivalences

π∗ HomS(M, f!TR(I)) ∼= π∗ HomR(f
∗M,TR(I))

∼= Homπ∗R(π∗(f
∗M), I)

∼= Homπ∗S(π∗M, rR,S(I))

where the last step follows from adjunction and the observation that π∗(f
∗M) ∼= π∗ HomR(R, f∗M) ∼=

π∗ HomS(S,M) ∼= π∗M . Since rR,S(I) is an injective π∗S-module we have

Homπ∗S(π∗M, rR,S(I)) ∼= π∗ HomS(M,TS(rR,S(I))).

Taking M = S and applying Lemma 4.3 gives the result. �

In [GL00] Greenlees and Lyubeznik introduced a way to localize local cohomology modules at
some non-maximal prime ideal p; note that H∗

m is always m-torsion, and so the naive approach
of directly localizing at p does not work. The approach of Greenlees and Lyubeznik is to first
dualize, then localize, and then dualize again. We assume for simplicity that π∗R is a graded
local ring with maximal ideal m.
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Definition 4.10. Let p be a homogeneous ideal in Spech(π∗R), and suppose M is a (π∗R)p-
module. Let Ip denote the injective hull of π∗R/p. The Matlis dual DpM is defined by

DpM = Hom(π∗R)p(M, Ip).

Greenlees and Lyubenzik introduced a functor, called dual localization and denoted Lp : Modπ∗R →
Mod(π∗R)p , which is defined as the composite

Modπ∗R
Dm−−→ Modopπ∗R

(−)p
−−−→ Modop(π∗R)p

Dp

−−→ Mod(π∗R)p.

For example, if p has dimension d and M is a finitely-generated π∗R-module, then by [GL00,
Lem. 2.5]

(4.11) LpH
i
m(M) ∼= Hi−d

p (Mp).

There is an obvious way to define a lift of this functor to topology. First, we start with the
analog of the Matlis dual of a module.

Definition 4.12. We define the Brown–Comenetz dual DTR(I) : ModR → ModopR by setting
DTR(I)(M) = HomR(M,TR(I)), which has a natural structure of an R-module. For ease of
notation we will write Dp for DTR(Ip).

We can then define a functor Lp : ModR → ModRp
as the composite

ModR
Dm−−→ ModopR

Lp

−−→ ModopRp

Dp

−−→ ModRp.

Lemma 4.13. For any M ∈ ModR there is an isomorphism Lpπ∗M ∼= π∗(LpM).

Proof. This follows from commutativity of the diagram

ModR
Dm //

π∗

��

ModopR

π∗

��

Lp // ModopRp

π∗

��

Dp // ModRp

π∗

��
Modπ∗R

Dm // Modopπ∗R

(−)p // Modop(π∗R)p

Dp // Mod(π∗R)p

which is an easy consequence of (4.1) and Proposition 3.4. �

Proposition 4.14. Suppose that π∗R is such that ΓmR ≃ ΣνTR(Im). Then for each p ∈

Spechπ∗R there is a strongly convergent spectral sequence

(4.15) (Hs
p(π∗R)p)t+s =⇒ (Ip)t−ν−d.

Proof. Since π∗R is local we have Γm ≃ ΓV(m). Recall the spectral sequence of Proposition 3.14

(Hs
mπ∗R)t+s =⇒ πt(ΓV(m)R).

Applying Lp to this spectral sequence and using Lemma 4.13 and (4.11) we get a spectral se-
quence

(Hs−d
p ((π∗R)p))t =⇒ πt(LpΓV(m)R).

Note that ΓV(m)R ≃ ΣνTR(Im) ≃ Σν
DmR. Then we have

πt(LpΓV(m)R) ∼= πt−ν(LpDmR) ∼= πt−ν(DpLp(D
2
mR)) ∼= πt−ν(Dp(Rp)),

which is isomorphic to πt−ν(TRp
(Ip)) ∼= (Ip)t−ν . Reindexing we see that the spectral sequence

is as claimed. �

Remark 4.16. If this spectral sequence is isomorphic to that of Proposition 3.19(1), then using
Lemma 4.3 there would be an equivalence ΓpR ≃ Σν+dTR(Ip).
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Remark 4.17. (Dwyer–Greenlees–Iyengar duality) Suppose that k is a field and R is a cocon-
nective commutative augmented k-algebra, with π∗R Noetherian, and an isomorphism π0R ∼= k.
Assume additionally that R → k is Gorenstein of shift a in the sense of [DGI06, Sec. 8].2 Note
that by [Gre16, Rem. 17.1] an algebraically Gorenstein ring spectrum gives rise to a Gorenstein
ring spectrum, but the converse need not hold, as the example R = C∗(BG, k) for G a compact
Lie group shows. Let ǫ = HomR(k, k), and assume that k has a unique ǫ-lift [DGI06, Def. 6.6].
Then [DGI06, Proposition 9.4] gives a spectral sequence

(H−s
m (π∗R))t+s =⇒ Homk(πt−aR, k) ∼= (Im)t−a.

Applying Greenlees–Lyubenzik dual localization we get a localized spectral sequence

(4.18) (H−s
p (π∗R)p)t+s =⇒ (Ip)t−d−a.

Once again, if this spectral sequence were isomorphic to that of Proposition 3.19(1), then there
would be an equivalence ΓpR ≃ Σa+dTR(Ip). For example, R = C∗(BG, k) → k for G a
compact Lie group of dimension w is Gorenstein of shift w. In this case, Benson and Greenlees
show [BG08, Thm. 12.1] (at least for Lie groups satisfying a mild orientability condition) that
ΓpR ≃ Σw−dTR(Ip). We will give an alternative proof in Proposition 4.34, and show that
ΓpR ≃ Σw+dTR(Ip). That the sign on d is wrong has also been noted in [BIKP16a, Sec. 5].

4.2. The local cohomology of the relative dualizing module. Suppose we have a morphism
f : R → S of ring spectra. As noted above, there always exists a triple f∗ ⊣ f∗ ⊣ f! of adjoint
functors. Inspired by the dualizing complexes of algebraic geometry [Har66, Nee96, Lip09],
Balmer, Dell’Ambrogio, and Sanders [BDS16] made the following definition.

Definition 4.19. The object ωf = f!(R) = HomR(S,R) is called the relative dualizing module.

The purpose of this section is to calculate π∗Γpωf , the local cohomology of the relative dual-
izing module, and relate this to work of Benson and Benson–Greenlees [Ben08, BG08]. We start
with a lemma which gives conditions for Grothendieck–Neeman duality to hold for f .

Lemma 4.20. Suppose that f : R → S is a morphism of ring spectra such that S is a dualizable
R-module, then f∗(−) ⊗ ωf

∼= f!(−). Moreover if f! preserves compact objects, then ωf is an
invertible S-module.

Proof. Since S is a compact (and hence dualizable) R-module, f! preserves colimits, and so by
[Nee96] or [BDS16, Thm. 3.3] there is a natural isomorphism f!(−) ∼= ωf ⊗ f∗(−). If f! preserves
compact objects then by [BDS16, Thm. 1.9] ωf is an invertible S-module.3 �

Based on the discussion above we make the following definition.

Definition 4.21. Let R be a ring spectrum. We say that R is absolute Gorenstein with shift
ν if, for each p ∈ Spechπ∗R of dimension d, there is an equivalence ΓpR ≃ Σν+dTR(Ip). More
generally, we say that R is absolute Gorenstein with twist J if there exists an R-module J such
that there is an equivalence

ΓpR⊗R J ≃ ΣdTR(Ip)

for any p ∈ Spechπ∗R of dimension d.

Remark 4.22. We use the terminology absolute Gorenstein as to not conflict with Greenlees’
notion of Gorenstein ring spectra [Gre16]. The definition given by Greenlees requires a ring
spectrum R equipped with a map R → k. This is said to be Gorenstein of shift ν if there is
an equivalence HomR(k,R) ≃ Σνk of R-modules. In the case that R is a k-algebra, see [Gre16,

2Here we identify k with Hk.
3Note the unfortunate clash of notation; in the notation of [BDS16] f∗ is the induction functor.
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Sec. 18] for conditions that ensure that Gorenstein k-algebras are absolute Gorenstein, while the
general case is covered in [DGI06] (both of these only consider the maximal ideal, however it is
possible that the methods of dual localization allow this to also be done at an arbitrary prime
ideal).

For example, if R is algebraically Gorenstein with shift ν, then R is absolute Gorenstein with
shift ν. To find examples, we start with the following definition.

Definition 4.23. We say that S has a Gorenstein normalization (of shift ν) if there exists a
ring spectrum R and a map of ring spectra f : R → S such that

(1) R is absolute Gorenstein with shift ν,
(2) S is a compact R-module, and
(3) ωf is an invertible S-module.

Remark 4.24. It is possible for S to satisfy the first two conditions, but not the third. As an
example, one can take Hk → Hk[t, s]/(s2, t2, st), see [BDS16, Ex. 4.11].

Remark 4.25. This definition is inspired by Noether’s normalization lemma in commutative
algebra. Recall that this says that if S is a finitely-generated graded commutative k-algebra
with S0 = k and Si = 0 for i < 0, then S has a polynomial subring R = k[x1, . . . , xr ] over which
it is finitely-generated as a module. Indeed, in this case HR is algebraically Gorenstein, and HS
is a compact HR-module (apply [Gre16, Lemma. 10.2(i)]), although ωf need not be invertible.

Before calculating π∗Γpωf , we need a preliminary lemma.

Lemma 4.26 (Orthogonality relation). Suppose that p 6= p′ are two prime ideals of Spechπ∗R.

If M ∈ Modp−tors

Rp
and N ∈ Modp

′−tors

R
p′

, then M ⊗N ≃ 0.

Proof. We have Rp//p⊗Rp′//p′ ≃ 0 by [HPS97, Prop. 6.1.7]. It follows that M ⊗Rp′//p′ ≃ 0 for
all M ∈ Loc(Rp//p) and in turn that M ⊗N ≃ 0 for all N ∈ Loc(Rp′//p′). By Lemma 3.18 this
gives the claimed orthogonality result. �

Theorem 4.27. Suppose S has a Gorenstein normalization f : R → S of shift ν. Then for each
p ∈ Spechπ∗S of dimension d, there is an equivalence

Σ−dΓpS ⊗ ωf ≃ ΣνTS(Ip).

In particular, we obtain an isomorphism π∗(Γpωf ) ≃ (Ip)∗−d−ν .

Proof. Let us write VS,R : Spechπ∗S → Spechπ∗R for the induced map on Spech. Let q ∈

Spechπ∗R, and U = (VS,R)
−1(q). Note that our assumptions imply that U is a finite discrete

set. Then we have decompositions

f∗(ΓqM) ≃
⊕

p∈U

Γp(f∗M) and f!(TR(Iq)) ≃
⊕

p∈U

TS(Ip)

Here the first follows from [BIK12, Cor. 7.10] with the functor F = f∗, while the second follows
from Proposition 4.9 and the example before [BK02, Prop. 7.1]. Moreover, since R is absolute
Gorenstein we have Σν+dTR(Iq) ≃ ΓqR.

Noting that f∗R = S, the decomposition (4.2) and Lemma 4.20 give

(4.28)
⊕

p∈U

ΓpS ⊗ ωf ≃ f∗(ΓqR)⊗ ωf ≃ f!(ΓqR).
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Fix p′ ∈ U . Then using the decompositions (4.2) and (4.28) and Lemma 4.26 we have equiv-
alences

Γp′S ⊗ ωf ≃ Γp′S ⊗
⊕

p∈U

ΓpS ⊗ ωf

≃ Γp′S ⊗ f!(ΓqR)

≃ Γp′S ⊗ f!(Σ
ν+dTR(Iq))

≃ Σν+dΓp′S ⊗
⊕

p∈U

TS(Ip)

≃ Σν+dTS(Ip′).

where the last step follows since TS(Ip) ∈ Modp−tors
Sp

for each p by Lemma 4.4. Now take

homotopy, and apply Lemma 4.2. �

Remark 4.29. It may be possible to prove Theorem 4.27 by using the methods of [BG08]; this
should certainly be the case when ωf is a shift of S. The technique used in the proof of
Theorem 4.27 is inspired by work of Benson [Ben08].

Remark 4.30. This theorem should be compared to the following result. Let (A,m, k) be a
Noetherian local ring, and ωA a normalized dualizing complex for A. By [Har66, Prop. 6.1] there
is an equivalence Γm(ωA) ≃ Im in D(A).

More generally, Theorem 4.27 appears to be the shadow of a residual complex formalism in
derived algebraic geometry, complementing the global approach taken in [Lur14, Ch. II.6] or
[GR16, Ch. II], in the following sense: Suppose given a commutative diagram

k
r //

s
��❄❄❄❄❄❄❄❄ R

f

��
S

of E∞-ring spectra. We think of k as the base over which the corresponding map f : Spech(S) →

Spech(R) of derived affine schemes lives. Following Neeman [Nee96], the absolute dualizing
complexes of R and S should then be defined as ωR = r!(k) and ωS = s!(k), respectively.
Heuristically, the absolute dualizing complex is equivalent to a residual complex constructed by
gluing together the local dualizing complexes of all points R → κ of Spech(R), and similarly
for S. The conclusion of Theorem 4.27 establishes this compatibility of the absolute dualizing
complex and the local dualizing complexes. Furthermore, there is the following simple relation
between the absolute and relative dualizing complexes:

Corollary 4.31. With notation as above, assume additionally that ωf is dualizable, then there
is an equivalence ωR ⊗R ωf ≃ ωS.

Proof. It is clear that there is a natural equivalence of forgetful functors r∗◦f∗ ≃ s∗, which yields
a natural equivalence f! ◦ r! ≃ s! upon passing to right adjoints. Evaluating this equivalence on
k thus gives f!(ωR) ≃ ωS . Combined with Lemma 4.20, we obtain the desired equivalence
ωS ≃ f!(ωR) ≃ f∗(ωR)⊗S ωf . �

In particular, this corollary provides a transitivity relation for Gorenstein normalization.
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4.3. Examples of absolute Gorenstein ring spectra. Suppose S has a Gorenstein normal-
ization f : R → S. The above theorem is most useful in the case where ωf is known for other
reasons, and we shall see that there are examples where this is the case. There are three pos-
sibilities for ωf : either it is trivial, a suspension of S, or an arbitrary invertible S-module. We
illustrate each of these cases below.

To this end, we will work with the coconnective E∞-ring spectrum C∗(BG, k) of cochains on a
compact Lie group G with coefficients in a field k. Their basic properties are neatly summarized
in the paper [BG14] by Benson–Greenlees. In particular, the category ModC∗(BG,k) of module
spectra over C∗(BG, k) has a symmetric monoidal structure which we will denote by ⊗C∗(BG,k)

throughout this section.
Our first example is when f∗ and f! agree up to a shift. The example in this result is due to

Benson and Greenlees [BG08, Thm. 12.1]; we provide a short alternative proof.

Proposition 4.32. Suppose S has a Gorenstein normalization with shift ν such that f∗ ≃ Σℓf!.
Then S is absolute Gorenstein with shift ν + ℓ. For example, this is the case if S = C∗(BG, k)
for G a compact Lie group of dimension w, where the adjoint representation of G is orientable
over k, or k has characteristic 2. In this case, C∗(BG, k) is absolute Gorenstein with shift w.

Proof. That S is absolute Gorenstein with shift ν + ℓ is just a special case of Theorem 4.27.
For the example, let us write C∗(BG) for C∗(BG, k) for brevity. There is always a faithful
representation G → SU(n), which gives rise to a morphism f : C∗(BSU(n)) → C∗(BG). Recall
that H∗(SU(n), k) ∼= k[c2, . . . , cn] is a regular local ring (in particular, it is Gorenstein). It
follows that C∗(SU(n)) is Gorenstein of shift n2 − 1, and so we can apply Proposition 4.7 to

see that for q of degree d we have ΓqC
∗(BSU(n)) ≃ Σn2−1+dTC∗(BSU(n))(Iq) (see also [BG08,

Thm. 10.6(i)], but note that the sign there is incorrect).
A theorem of Venkov [Ven59] implies that H∗(G, k) is finitely-generated as a module over

H∗(SU(n), k). Combining [Gre16, Lem. 10.2(i)] and [HPS97, Thm. 2.1.3] we see that C∗(BG) is
a compact C∗(BSU(n))-module. Furthermore, by [BG14, Thm. 6.10] and the remark following,

we have f! ≃ Σw−n2+1f∗ so that C∗(BG) has a Gorenstein normalization of shift n2 − 1 and
C∗(BG) is absolute Gorenstein with shift w. �

In particular, if G is a finite group C∗(BG) is absolute Gorenstein of shift 0.

Remark 4.33. In [BG08] it was claimed that ΣdΓpC
∗(BG, k) ≃ ΣwTC∗(BG)Ip, however, as noted

in [BIKP16a, Sec. 5], the sign on d is incorrect.

We note that we can extend this example to the case of a general compact Lie group.

Proposition 4.34. Let G be a compact Lie group of dimension w where the adjoint representa-
tion is not orientable, and k does not have characteristic 2. Then there exists a sign representa-
tion ǫ of G such that for each p ∈ SpechH∗(G, k) of dimension d there is an equivalence

Σ−dΓpC
∗(BG, k)⊗C∗(BG,k) C

∗(BG, ǫ) ≃ ΣwTC∗(BG)Ip,

i.e., C∗(BG, k) is absolute Gorenstein with invertible twist.

Proof. This is similar to the previous argument, however in this case the dualizing module is
not simply a suspension. In fact there exists an index 2 subgroup of G (see the bottom of page

42 of [BG97b]), and a sign representation ǫ such that f! ≃ Σw−n2+1C∗(BG, ǫ) ⊗C∗(BG,k) f∗
(see [BG14, Rem. 6.11]), and we have Σ−dΓpC

∗(BG, k) ⊗C∗(BG,k) C
∗(BG, ǫ) ≃ ΣwTC∗(BG)Ip,

as required. Finally, the C∗(BG, k)-module C∗(BG, ǫ) is invertible by [BG14, Cor. 6.9], since
SU(n) is connected. �
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5. Local duality for finite-dimensional Hopf algebras

The purpose of this section, which can be considered as an extended example based on the
previous sections, is to investigate local duality for the cellular objects in the category of comod-
ules over a finite-dimensional Hopf algebra B over a field k (equivalently, quasi-coherent sheaves
on the finite group scheme associated to B).

The abelian category of comodules over a finite-dimensional Hopf algebra over k is a locally
Noetherian Grothendieck abelian category with a closed symmetric monoidal structure; this
is a special case of the study of Hopf algebroids in [BHV15, Sec. 4] (that ComodB is locally
Noetherian appears in the proof of Lem. 4.17 of loc. cit.). We also refer the reader to [HPS97,
Sec. 9.5] for direct proofs of some standard properties of ComodB.

Following [BHV15, Sec. 4] we define a stable category StableB as a replacement for the usual
derived category of comodules. This turns out to be an∞-categorical version of the (triangulated)
category C(B) studied in [HPS97, Sec. 9.6], however since we do not need this result, we do not
prove it.

Definition 5.1. Let Gd be a set of representatives of dualizable B-comodules. We define the
stable ∞-category of B-comodules as StableB = Ind(ThickB(Gd)).

This is a stable category compactly generated by the objects Gd. It is a simple check with
the Jordan–Hölder theorem to see that an object is dualizable in ComodB if and only if it is
a simple comodule, so that these also provide a set of compact generators of ComodB. The
endomorphism ring is given by π−∗ HomStableB (k, k)

∼= Ext∗B(k, k); this follows, for example, by
[BHV15, Cor. 4.19]. Friedlander and Suslin [FS97] have proved that Ext∗B(k, k) is a Noetherian
graded local ring. In light of this, we make the following definition.

Definition 5.2. ForM ∈ StableB we define Ext∗B(k,N) = π−∗ HomStableB (k,N). For simplicity,
we will usually just write H∗(B,N). If N is m-coconnective, then by [BHV15, Cor. 4.19], we see
this agrees with the classical definition of Ext in the category of B-comodules.

Let C := Loc(k) be the full subcategory of cellular objects in StableB . Given any specialization

closed subset V of SpechH∗(B, k), we consider the full subcategory of C

CV−tors = Loc(k//p | p ∈ V),

where the Koszul object k//p is constructed as in Section 3. Since k is clearly compact in C, we
can use local duality to obtain local homology and cohomology functors.

Theorem 5.3. There is a quadruple of functors (ΓV , LV ,∆
V ,ΛV) on C satisfying all the prop-

erties in Theorem 2.4. In addition, ΓV and LV are smashing.

Proof. Consider the local duality context (C, CV−tors). The first claim follows from Theorem 2.4
while the second one is a consequence of Lemma 2.7. �

Remark 5.4. The functors defined above can be extended to StableB, resulting in a quadruple
naturally equivalent to the one yielded by the local duality context (StableB,Loc

⊗(k//p | p ∈ V)).
This is completely formal, but we omit here for the sake of conciseness.

Now, according to Proposition 2.26, there is a symmetric monoidal equivalence of stable cat-
egories

(5.5) Φ : C
∼ // ModR,

where Φ = HomStableB (k,−) and R = EndStableB (k). As we shall see, the equivalence in (5.5)
allows us to easily transfer results from ring spectra to StableB that may have been difficult to
prove directly. Before we continue, it is worth pointing out that in some cases we can give a
more concrete description of the cellular objects.
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Proposition 5.6. If B = (kG)∗ for a finite group G, then there is an equivalence

Loc(k) ≃ ModC∗(BG,k)

where C∗(BG, k) denotes the E∞-ring spectrum of k-valued cochains on the classifying space BG
of G. In the case that G is a finite p-group we have

Stable(kG)∗ ≃ ModC∗(BG,k).

Proof. Again letting R = EndStableB (k) we have that Loc(k) ≃ ModR. By the Rothenberg–
Steenrod construction we have R ≃ C∗(BG, k), see [BK08, Sec. 4] for example. In the case
where G is a finite p-group, Stable(kG)∗ is monogenic, so that it is isomorphic to Loc(k). �

Remark 5.7. More generally, there is a version of this proposition for compact Lie groupsG, where
the ∞-category Fun(BG,Modk) of k-valued local systems on BG plays the role of StablekG.

Proposition 5.8. Given a specialization closed subset V ⊆ SpechH∗(B, k), the functor Φ re-
stricts to an equivalence of full subcategories

Φ : LocStableB (k//p | p ∈ V)
∼ // LocModR

(R//p | p ∈ V).

Proof. It suffices to show that Φ(k//p) ≃ R//p. Let a be a homogeneous element of degree d in
H∗(B, k). Then,

Φ(k
a
−→ Σdk → k//a) = (R

Φ(a)
−−−→ ΣdR → Φ(R//a)).

Under the isomorphism Hs(B, k) ∼= π−sR, we can identify Φ(a) with a in degree −d. Hence, we
get Φ(k//a) ≃ R//a. The conclusion follows from the observation that k//p ≃ k//a1 ⊗ · · · ⊗ k//an
for p = (a1, . . . , an), together with the fact that Φ is a symmetric monoidal equivalence. �

When V = V(p), we get a more explicit description of the local homology and cohomology
functors.

Proposition 5.9. Let p in SpechH∗(B, k). The local duality contexts (StableB,Loc(k//p)) and
(StableB ,Loc(k//q | q ∈ V(p))) are equivalent.

Proof. This is immediate in light of Proposition 5.8 and Proposition 3.12. �

Likewise, Proposition 5.8 together with Corollary 3.13 yield:

Proposition 5.10. Let p = (p1, p2, . . . pn) in SpechH∗(B, k). For every M ∈ C, there are
natural equivalences

ΓV(p)M ≃ colims Σ
−sd−nk//ps ⊗M and ΛV(p)M ≃ lims k//p

s ⊗M,

where d = |p1|+ · · ·+ |pn| and the objects k//ps, s ≥ 1, are defined as in Section 3.

Another consequence of (5.5) is the existence of spectral sequences computing the cohomology
of the different local cohomology and local homology functors, which converge for cellular objects
in StableB.

Proposition 5.11. Let p in SpechH∗(B, k) and M ∈ C. There are strongly convergent spectral
sequences of H∗(B, k)-modules:

(1) E2
s,t = (Hs

p(H
∗(B,M)))t =⇒ Hs+t(ΓV(p)M), with differentials dr : Er

s,t → Er
s−r,t+r−1,

(2) E2
s,t = (Hp

−s(H
∗(B,M)))t =⇒ Hs+t(ΛV(p)M), with differentials dr : Er

s,t → Er
s−r,t+r−1,

and
(3) E2

s,t = (ČHs
p(H

∗(B,M)))t =⇒ Hs+t(LV(p)M), with differentials dr : Er
s,t → Er

s−r,t+r−1.

Proof. The result follows from applying the equivalence (5.5) to the spectral sequences in Proposition 3.14.
�
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Remark 5.12. We note that constructing these spectral sequences directly via a filtration of the
Koszul complex is possible, though determining convergence from this perspective is difficult.
One advantage of our approach is that the convergence of the spectral sequence is immediate.

Next, observe that the equivalence in (5.5) gives the analogous result to Proposition 3.4.

Lemma 5.13. For any p ∈ SpechH∗(B, k) there exists a smashing localization Lp such that for
all M in C there is an isomorphism H∗(B,LpM) ∼= H∗(B,M)p.

Let us write Cp for the essential image of Lp. Given M ∈ C, we will write Mp for LpM to ease
notation.

Lemma 5.14. The category Cp is equivalent to ModRp
.

Proof. This is an application of derived Morita theory. First, it is easy to see that Cp ≃ Loc(kp).
Now note that π∗ HomCp

(kp, kp) ∼= π∗ HomC(k, kp) ∼= (π∗R)p ∼= π∗Rp and the result follows. �

In analogy with ring spectra, we introduce the definitions below where once again we write
∆p for the right adjoint to Lp.

Definition 5.15. For p ∈ SpechH∗(B, k) and M ∈ C define the p-local cohomology and homol-
ogy functors by ΓpM = ΓV(p)Mp and ΛpM = ΛV(p)∆pM , respectively.

We let Cp−tors
p denote the essential image of Γp. Combining Proposition 5.8 and Lemma 5.14

we get the following.

Proposition 5.16. The functor Φ: C
≃
−→ ModR restricts to an equivalence Cp−tors

p

≃
−→ Modp−tors

Rp
.

Proposition 3.19 translates into the spectral sequence below.

Proposition 5.17. Let p ∈ SpechH∗(B, k) be a homogeneous ideal. For any M ∈ C there exists
a strongly convergent spectral sequences of H∗(B, k)-modules

E2
s,t

∼= (Hs
pH

∗(B,M)p)t =⇒ Hs+t(B,ΓpM),

with differentials dr : Er
s,t → Er

s−r,t+r−1.

Remark 5.18. This spectral sequence is a generalization of a spectral sequence due to Greenlees–
Lyubeznik [GL00] and Benson [Ben01] when B = (kG)∗ for G a finite group and M = k.

Remark 5.19. If we extend the definition of Γp to all M ∈ StableB via ΓpM = Γpk ⊗M , then
we can make sense of this spectral sequence for any M ∈ StableB . First note that since Cell is
right adjoint to a symmetric monoidal functor, it is lax symmetric monoidal. This implies that
for any cellular object N and arbitrary M , there is a natural map

N ⊗ Cell(M) → Cell(N ⊗M).

The collection of N for which this is an equivalence is a localizing subcategory containing k, and
so contains all cellular objects. Since Γpk is always cellular, we see that

Cell(ΓpM) ≃ Cell(Γpk ⊗M) ≃ Γpk ⊗ Cell(M) ≃ Γp Cell(M).

But for any M ∈ StableB there is an isomorphism H∗(B,Cell(M)) ∼= H∗(B,M) (see the proof
of Lemma 2.25 for example), so that the equivalence above gives the spectral sequence for all
objects of StableB. We thank the referee for this observation.

Finally, we proceed to compare our functors with the ones constructed in [BIK08] and [BIK12].
Let Z ∈ StableωB be a compact object. For all X ∈ StableB set H∗

Z(B,X) = π∗ HomStableB (Z,X)
to be the cohomology of X with respect to Z.
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For any specialization closed subset V ⊆ SpechH∗(B, k), Benson, Iyengar, and Krause con-
struct a localization functor on StableB (their parallel to our LV) whose kernel is precisely

TV = {X ∈ StableB | H∗
Z(B,X)p = 0 for all p ∈ SpechH∗(B, k) \ V , Z ∈ StableωB}.

We have the following comparison result.

Proposition 5.20. For any specialization closed set V, there is an equivalence of categories
between Loc(k) ∩ TV and Loc(k//p | p ∈ V).

Proof. Let X be a cellular object. Note that if H∗(B,X)p ∼= H∗(B,Xp) = 0, then Xp ≃ 0.
Therefore, H∗(B,X)p = 0 implies that H∗

Z(B,X)p = 0 for all Z ∈ StableωB. The statement then
follows from (5.5) and Proposition 3.21. �

We finish by observing that the same proof of Corollary 3.22 yields a comparison of these
functors to those constructed by Benson, Iyengar, and Krause.

Corollary 5.21. The functors Γp and Λp agree with the restriction of the equally denoted func-
tors constructed by Benson, Iyengar, and Krause in [BIK08] and [BIK12] to the subcategory of
cellular objects.

5.1. The absolute Gorenstein condition for StableB. The purpose of this short section is
to show that if the subcategory of cellular objects in StableB satisfies the absolute Gorenstein
condition, then, in a sense, so does StableB (and in fact this holds in any stable category). For
clarity, let us write R = HomStableB (k, k), so that π−∗R ∼= H∗(B, k), and the subcategory of
cellular objects in StableB is equivalent to ModR.

We first construct the analogue of the objects TR(I) of Section 4. Using Brown representabil-
ity, for each injective H∗(B, k)-module I there is an object TB(I) with the property that for any
M ∈ StableB

π∗ HomStableB (M,TB(I)) ∼= HomH∗(B,k)(H
∗(B,M), I).

Once again, by taking M = k we see that H∗(B, TB(I)) ∼= I as modules over H∗(B, k).

Proposition 5.22. If R is absolute Gorenstein with shift ν, then, for any p ∈ SpechH∗(B, k)
of dimension d, there is an equivalence in StableB

CellTB(Ip) ≃ Σd+vΓpk,

where Cell is the right adjoint to the inclusion ι : C → StableB as in Section 2.3.

Proof. As previously, we write Φ: StableB → ModR for the functor HomStableB (k,−). Since
π∗Φ(CellTB(I)) ∼= π∗Φ(TB(I)) ∼= I we can apply Lemma 4.3 to see Φ(CellTB(I)) ≃ TR(I).

Since R is absolute Gorenstein of shift ν, for any p ∈ SpechH∗(B, k) we have TR(Ip) ≃ Σd+vΓpR.
Thus, using Proposition 5.16, we have

Φ(CellTB(I)) ≃ TR(I) ≃ Σd+vΓR
p R ≃ Φ(Σd−vΓpk).

Since everything in sight in cellular, Φ is an equivalence, and so applying its inverse, we conclude
that CellTB(Ip) ≃ Σd+vΓpk, as required. �

In the case that B = (kG)∗ for G a finite group the results of [Ben08] imply that TB(I) is
already cellular. We suspect this is always the case, however we are unable to prove this directly.
Note that it is always in the π-local category. Thus we leave this as an open question:

Question 5.23. Is TB(I) always cellular?

When G is a finite p-group, k is the only simple B = (kG)∗-comodule [HPS97, Sec. 9.5].
Hence, Stable(kG)∗ is compactly generated by k, so that all objects are cellular. Hence, we get:

Corollary 5.24. If B = (kG)∗ for G a finite p-group, then for any p ∈ SpechH∗(B, k) of
dimension d, there is an equivalence TB(Ip) ≃ Σd+vΓpk in StableB .
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